• Ebpay

    睿治

    智能数据治理平台

    睿治作为国内功能最全的数据治理产品之一,入选IDC企业数据治理实施部署指南。同时,在IDC发布的《中国数据治理市场份额,2022》报告中,蝉联数据治理解决方案市场份额第一。

    在线免费试用 DEMO体验 视频介绍

    数据分析八大模型:EOQ模型

    时间:2022-05-11来源:脑残梦浏览数:601

    这种从简单到复杂,从固定参数到概率,抓关键因素的做法,是非常值得学习的。

    今天跟大家分享一个经典的数据分析模型:EOQ模型,虽然原理很简单,但是建模的思路很值得学习哦。

    一、什么是EOQ模型

    EOQ是economic order quantity(经济订货)听着很玄乎,其实原理非常简单。就是把订货带来的成本,分为采购成本和持有成本两部分。

    采购成本:每次订货时发生的,谈判、签约、物流等成本

    持有成本:货物入仓后发生的,保管、存放、损失等成本

    总成本(TC)就等于采购成本加上持有成本

    显然,采购成本和持有成本是有关系的,在年度总需求量一定的情况下:

    每次采购得越多,采购次数就越少,采购成本就越低,但持有成本就高

    每次采购得越少,采购次数就越多,采购成本就越高,但持有成本就低

    因此,假设:

    1、总需求量D

    2、每次采购量是Q

    3、每单位持有成本是HC

    4、每单位采购成本是PC

    那么总成本的公式可以写成:

    TC=D/Q*PC+1/2*Q*HC

    还记得高数的小伙伴会发现:只要对TC求Q的一阶导数,得到的就是最优采购量啦。因此可以求得理论上的最优采购量是:

    Q=sqrt(2D* PC/HC)搞掂!

    二、使用EOQ模型先决条件

    计算看起来很简单,不过有先决条件

    1、对需求量有估计

    2、对采购成本、持有成本有核算

    这里,需求量,可以从年度销售计划反推,计算一个能达成销售任务的保底需求量。先不考虑万一卖得很好,再补货的场景(或者说:真要是卖爆了,收入超预期,再申请费用追加采购也不是难事)。

    采购成本,则需考虑采购过程中物流、招投标工作,保证金的资金占用等成本。持有成本,则是存货的资金成本、仓库成本等。

    这些核算过程,是很多数据分析师不喜欢用EOQ的原因,因为他们不懂业务,不知道到底采购流程是啥,商品是啥,资金使用情况是啥,所以根本没法算。

    注意,这样核算出的,都是理论上的理想状态数值,所以这个方法很适合在做预算的时候用。相当于根据绩效目标,反推出商品量和采购成本,作为保底目标下发给业务。这样平时根据销售情况做调整的时候,也可以有个参照物,比单纯拍脑袋好用。

    三、EOQ模型优秀之处

    EOQ模型真正有价值的地方,在于其巧妙的解决思路:

    1、先剔除各种复杂情况,对最基础的逻辑建模

    2、不考虑概率,假设参数都是定值,简化计算

    3、找到相互制衡的两个关键因素,求解最优值

    这种从简单到复杂,从固定参数到概率,抓关键因素的做法,是非常值得学习的。因为现实工作中,很多人喜欢一上来就用概率来衡量问题。比如采购的时候,跑来问:“小熊妹,你预测一下下个月销售量是多少,我好下采购单,要99%准就行,不用100%”

    开什么玩笑!我要有这本事,我去预测股价,赚他几百万好不好。要知道,只有大量、重复发生的事件,才可以被记录,观察概率。

    月销量这种每个月情况都不一样的事,概率本身就是不靠谱的。而且这里还有干扰因素,比如临时做个促销,刮风下雨断物流之类的,用概率很难一一解释。

    反而是,处理成固定参数以后,既可以顺利获得观察历史数据积累经验,又可以给业务方划定工作目标,督促他们完成最低限额要求,一举两得。这不比赌命猜概率要靠谱得多。

    四、更多的应用场景

    这种思路,可以广泛运用到商业分析领域,比如经典的价格敏感性模型,任务指派模型,最短路径模型,都是沿着这个思路展开的,以后有机会再和大家慢慢分享。


    (部分内容来源网络,如有侵权请联系删除)
    立即申请数据分析/数据治理产品免费试用 我要试用
    customer

    在线咨询

    在线咨询

    点击进入在线咨询